
2/23/2019

1

Security in a fast moving
Agile/DevOps Environment

Bart De Win

www.pwc.com

SecAppDev 2019

Bart De Win ?

•20 years of Information Security Experience

•Ph.D. in Computer Science - Application Security

•Author of >60 scientific publications

•ISC2 CSSLP & CISSP certified

•Director @ Cyber&Privacy PwC Belgium:

•Leading the Threat & Vuln. Mngt. team

•(Web) Application tester (arch. review, code review, dynamic review, ...)

•Proficiency in Secure Software Development Lifecycle (SDLC) and Software
Quality (ISO25010)

• OWASP SAMM co-leader

• Contact me at bart.de.win@pwc.com

Security in a Fast Moving Agile/DevOps Environment

2

SecAppDev 2019

2/23/2019

2

Secure Agile Development

Security in a Fast Moving Agile/DevOps Environment

3

SecAppDev 2019

Once upon a time in 2001 …

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

4

2/23/2019

3

Boyd’s Law

• Speed of iteration beats quality of iteration

• Sooner to correct

• Better for testing

• Successful companies continuously improve their software

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

5

Scrum

Secure Development Lifecycles: Motivation and Overview

6

SecAppDev 2019

2/23/2019

4

So what about security ?

SecAppDev 2019

Agile Development Security

Speed & Flexibility Stable & Rigorous

Short cycles Extra activities

Limited documentation Extensive analysis

Functionality-driven Non-functional

Security in a Fast Moving Agile/DevOps Environment

7

Secure agile development

If we want to be successful in
developing secure applications,

we radically have to change the way
we organize this.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

8

2/23/2019

5

Secure Agile Manifesto

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2. Working valuable software is the primary measure of progress.

3. Security is a shared responsibility between everybody involved in the life cycle of the product.

4. Welcome changing (security) requirements, even late in development, taking into account that
enough security is enough.

5. Dare to deploy software. Not every release requires full assurance.

6. Provide security elements to use in development projects. These elements should be known,
readily available and continuously evolving.

7. Security should be automated and incorporated in the development practices.

8. Build projects around motivated individuals. Knowing how to build secure software is an intrinsic
motivator.

9. The most effective solution emerges from self-organizing teams able to call upon security experts
when needed.

10. At regular intervals, the team reflects on how to become more effective, adjusting its processes and
technical solutions accordingly.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

9

Valuable Software

-Why-

• Security is a software quality, not a goal
in itself

• The added value of security should offset
its cost

• Insecure software damages the
organisation (reputation, financially, …)

-How-

• Have security champions challenge
functional requirements

• Pragmatic cost benefit analysis

• Specify security as concrete user stories,
acceptance criteria and/or DoD

• Have a security voice in the planning
game

• MS bucket system to the rescue

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

10

2/23/2019

6

Valuable Software

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

11

Code over Documentation

-Why-

• Documentation does not always add
value to the customer

• Security’s primary goal is supporting the
business by improving the software, not
producing documentation

• Maintaining documentation for rapidly
changing software is expensive and
challenging

-How-

• Prefer actionable items over standards
and policies

• Strive for a single source of truth

• Use expressive, readable, automated
tests as documentation

2. Working valuable software is the primary measure of progress.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

12

2/23/2019

7

Code over Documentation

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

13

Shared Responsibility

-Why-

• Shorter cycles means less time to
implement security

• Scalability

- Security people are typically outnumbered

• Everybody should feel responsible,
otherwise it will fail

- developers can’t fix the problem all by
themselves

-How-

• Enable everybody to suggest code
(security) improvements (push)

• Security team responsible for tooling,
awareness and support

• No central steering for security (push vs.
pull)

• Intelligent monitoring of state of
security

3. Security is a shared responsibility between everybody involved in the
life cycle of the product

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

14

2/23/2019

8

Shared Responsibility

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

15

Embrace Change

-Why-

• Changing requirements are a fact of life,
learn to live with it

• Companies loose competitive advantage
when their operation is too rigid

-How-

• Use analysis techniques to work on
moving targets

• Ensure delivery of high quality software
to facilitate changes

- Embrace refactoring to improve code
quality and minimize technical debt

• Build flexible security solutions

4. Welcome changing (security) requirements, even late in
development, taking into account that enough security is enough.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

16

2/23/2019

9

Embrace Change

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

17

Dare to deploy

-Why-

• As software changes often, a
vulnerability might only be exposed
briefly

- This reduces the attack window

• Completely secure software does not
exist. Trying to produce it is a very
expensive exercise in futility.

• In case of issue, a new version can be
released quickly

-How-

• Trust in your people and practices to get
the balance of security right.

• Leverage A/B testing to limit application
exposure and frustrate attacks

• Increase security efforts for sensitive
features and important releases

• Invest in detective controls. Prevention
alone is insufficient

5. Dare to deploy software. Not every release requires full assurance.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

18

2/23/2019

10

Dare to deploy

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

19

Available security elements

-Why-

• It is inefficient for all teams to invent
their own solutions

• Well-known good practices/solutions
increase quality and efficiency

• Security is a specialist topic

• Different projects (might) require
different variants

-How-

• Have a central security team prepare
reusable practices (e.g., threat
modelling, code review) and solutions
(e.g., a single sign-on component)

• Provide a central knowledge repository
(PULL)

• Communicate frequently and proactively
around the roadmap (PUSH)

• Build them the agile way

6. Provide security elements to use in development projects. These
elements should be known, readily available and continuously evolving.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

20

2/23/2019

11

Available security elements

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

21

Automate and integrate

-Why-

• Security people are outnumbered and
cannot scale

• Carrying out security tasks manually is
too slow and cannot scale

• Efficiency and uptake increase when
stakeholders are engaged using their
own tools and language

-How-

• Maximise security automation

- Minimize friction by accepting the
constraints of automation

• Favour test quality over quantity

• Embed security in the development
toolchain

- Use for securing but also educating

7. Security should be automated and incorporated into development
practices.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

22

2/23/2019

12

Automate and integrate

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

23

Motivation

-Why-

• Motivated people produce better
software

• Developers are genuinely interested in
security, given concrete advise

• Developers influence each other

• Motivation is a critical success factor for
any secure development initiative

-How-

• Disseminate concrete advice on how to
develop secure software

• Enable developers to better understand
security but appreciate the limits of their
knowledge

• Encourage attending events to foster
curiosity and learning

• Favour reward over punishment

• Gamify learning to increase engagement

8. Build projects around motivated individuals. Knowing how to build
secure software is an intrinsic motivator.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

24

2/23/2019

13

Motivation

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

25

Self-organizing teams

-Why-

• People are more motivated for the things
they are in control of

• The team is best placed to effectively
organize and work on the project

-How-

• Decide within the team who’s driving
security tasks

- Security “belts” might support this

• Decide within the team how to leverage
on security tooling

• Security specialists are available for
advice when needed (mentoring)

9. The most effective solution emerges from self-organizing teams able
to call upon security experts when needed.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

26

2/23/2019

14

Self-organizing teams

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

27

Self-reflection

-Why-

• Paradigms change. Technologies change.
Organisations change. People change.

• Cater for these changes by constantly
looking for better ways to organize your
delivery.

-How-

• Treat security as an explicit topic within
retrospective meetings.

• Allow to fail - Failure to deliver is a
learning opportunity.

• Learn from other teams what works well
and what doesn’t.

10. At regular intervals, the team reflects on how to become more
effective, adjusting its processes and technical solutions accordingly.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

28

2/23/2019

15

Self-reflection

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

29

Secure Agile Manifesto (recap)

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

2. Working valuable software is the primary measure of progress.

3. Security is a shared responsibility between everybody involved in the life cycle of the product.

4. Welcome changing (security) requirements, even late in development, taking into account that
enough security is enough.

5. Dare to deploy software. Not every release requires full assurance.

6. Provide security elements to use in development projects. These elements should be known,
readily available and continuously evolving.

7. Security should be automated and incorporated in the development practices.

8. Build projects around motivated individuals. Knowing how to build secure software is an intrinsic
motivator.

9. The most effective solution emerges from self-organizing teams able to call upon security experts
when needed.

10. At regular intervals, the team reflects on how to become more effective, adjusting its processes and
technical solutions accordingly.

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

30

2/23/2019

16

Final Notes on Agile Security

• Agile development changes the game for software security

• We need to start thinking in this mode and adapt our practices

- Value to the business and speed of delivery

- Not strive for 100% security

• Manifesto for Secure Agile

• Key success factors to achieve this are shared responsibility, automation and

integration

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

31

A secure CI/CD pipeline

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

32

2/23/2019

17

Sounds familiar?

SecAppDev 2019

Author: Pete Cheslock

Security in a Fast Moving Agile/DevOps Environment

33

A basic CI/CD pipeline

SCM Test ProdBuild

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

34

2/23/2019

18

Concourse crash course

Concourse is a CI/CD server similar to Jenkins or Gitlab.

• Work is performed in jobs. A job has a build plan, a sequence of steps to execute. A job
either succeeds or fails. Job execution can be made contingent on the pass/fail status
of any other job.

• All jobs are executed in containers, typically on worker nodes. Keeps all worker nodes
generic (cattle not pets)

• Important: No way of passing state between jobs. This is considered a Good Thing.

- Require suitable storage for artefacts, logs, etc. Keeps the pipeline relatively independent of the
choice of CICD server.

• Jobs fetch data via input resources and put data via output resources.

• The meaning of get (input) and put (output) is determined by the type of resource.

- Git resource: input -> pull from a git repo. Output -> push to a git repo

- Docker resource: input -> pull image from registry. Output -> push image to registry

Security in a Fast Moving Agile/DevOps Environment

35

SecAppDev 2019

Visualising the pipeline status

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

36

2/23/2019

19

CI/CD good practices (1/2)

SecAppDev 2019

• Pipeline as code.

- Text files, versioned, tested, stored in CMS.

• No secrets in repositories or images.

- Use something like truffleHog to find any accidentally committed secrets.

• Cattle not pets.

- Automatically deployable pipeline without hacks

- Be explicit about versioning: Same input produces the same output

- Don’t save state in the pipeline

• Perform all work in jobs which will be scheduled on worker nodes, freeing up master.

Security in a Fast Moving Agile/DevOps Environment

37

CI/CD good practices (2/2)

SecAppDev 2019

• Parallelise as many jobs as possible to reduce time to deploy

• Deploy the same artefacts you test

- Reuse images promoted through the pipeline

• Add assurance throughout the pipeline (Compliance as code)

- Promote artefacts

- Automated quality gates

• Track every change through tickets

Security in a Fast Moving Agile/DevOps Environment

38

2/23/2019

20

Integrating security into the CI/CD pipeline

SCM Test ProdBuild

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

39

Smoke

Testing

Health

Checks

The Big Picture

SCM

CI/CD

Build

Vuln.

Mgmt.

Issue

Tracker

Artefact

Repository

Container

Registry
Container

Security

in-IDE

checks

Light

SAST

SCA

Unit

Testing

Full

SAST

Seq. Req.

Verification

DAST

Fuzz

Testing

Light

SAST

pre-commit

commit

build

test

production

1

2

3

4

5

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

40

2/23/2019

21

Challenges of a Modern CI/CD Pipeline

• Ensuring authentication and authorization at all relevant
components of the pipeline (dev starts looking more like a
prod network).

- This is complicated by the relatively large attack surface area of
many products and the need for unattended execution.

- Kubernetes integration compounds the problem adding more
secrets that need to be passed among different layers of
abstraction (node, pod, container, application)

- Temptation to pass secrets insecurely when no simple/obvious
integration exists for tools

• Secure storage and retrieval of secrets in an automation-
friendly manner

• Managing the security of myriad 3rd party components
(in app and in container)

• Hardened configuration of the entire setup

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

41

(Light) SAST

• Early lightweight static testing. Note this is in addition to pre-commit in-IDE
checks.

• Only enable fast scans

- SonarQube (code quality metrics and security plugins --replaces FindSecBugs)

• Only enable low false positive scans (good practice to have a few targeted scans
specifically customized for the development environment)

• Limit the scan to the modified project

- Consider incremental scans if tooling supports it

Security in a Fast Moving Agile/DevOps Environment

42

SecAppDev 2019

2/23/2019

22

Security in a Fast Moving Agile/DevOps Environment

43

SecAppDev 2019

Registry

SCM

LIGHT SASTCICD

SonarQube Runner

SonarQube

Vulnerability
Management

Img 1

Img 2
Worker Node

1

5

3

7

8

11

6

4

9

10

12

Pull

SPAWN

JOB STATUS

Spawn

Pull

Pull

Run

Log

Pull

Persistent Storage
2

Build

• For reproducible builds, use explicit versions, don’t rely on default tags , such as latest.

• Run SCA scans.

• Treat databases as code, with versioned schema changes (e.g. Liquibase, Flyway..).

• Digitally sign the artefact

Security in a Fast Moving Agile/DevOps Environment

44

SecAppDev 2019

BUILD IMG
Persistent
Storage

REGISTRY

Img A

Img B v1

Img C

Img B v2

SCM

CICD

SCA RUNNER

ARTEFACT
REPOSITORY

SCA

Vulnerability
Management

SIGN

Obfuscation

3 4 Write logs

Pull

Pull

2

85

109 Use

11 Log1415

Pull
Push

13

16

J
o

b
 s

ta
tu

s

Spawn

12

7

Job status

Spawn

1 Spawn

6 Job status

2/23/2019

23

Testing

• Run multiple tests in parallel (Unit, API, Chaos..)

• Run heavier SAST regularly, but out of band (e.g. daily or weekly basis)

- Commercial SAST solution, Free solutions currently too far behind to be useful

- Customize rulesets to minimize false positives.

• Free up QA and testers to perform manual exploratory testing on artefacts which pass
automated testing.

Security in a Fast Moving Agile/DevOps Environment

45

SecAppDev 2019

SAST Runer
REGISTRY

Img A

Img B v1

Img C

Img B v2

SCM

CICD

API Testing

Vulnerability
Management

DAST

3Pull

Pull

Pull

2

8

5

10

15 Log

12

16 Job status

Spawn

11

7

Job status

Spawn

1 Spawn

6 Job status

Pull

App

Test

Test

SAST
4 Run

Log

9

L
o

g 13

14

Security requirements testing

• Human readable tests. Can be written by
non-technical analyst or business owner

• Scans the application (e.g. zap, possibly
with custom checks)

• Executes scenarios (login, etc.) via
Selenium

Security in a Fast Moving Agile/DevOps Environment

46

SecAppDev 2019

Src: https://continuumsecurity.net/bdd-security/

REGISTRY

Zap

BDD-Sec

Selenium

Nessus

BDD-Sec SSLyse

Selenium Nessus

ZAP

SCM

CICD

VAULT

APP

4 5

3

1

2

Pull ImgsSpawn

F
et

ch

NFS/S3/
K8S Persistent Volume

2/23/2019

24

Secrets: Overview of a vault solution

• Server is administered by security.

• Create security policies (e.g. Application
X identified by Token Y may access
Secrets A,B,C, may request credentials
for servers S,T, may request encryption
or decryption under key K, etc.

• Entities identified by tokens (limited
validity or uses) are mapped to policies.

• Automatic key rotation

• Dynamic creation of credentials (e.g.
create and return ODBC credentials for a
postgresql server and revoke them X
minutes later)

• Generate X509 certificates on the fly and

handle their revocation.

Security in a Fast Moving Agile/DevOps Environment

47

SecAppDev 2019

Application vulnerability management

• Centralise application vulnerability test
results (SAST, DAST, SCA, WAF, GRC,
Defects..)

• Results are reviewed by Application
Security experts*

- Remove false positives

- Prioritise

- Create tickets in the issue tracker.

* In the true spirit of agile/devsecops, most review and ticket
creation should be performed by the dev team themselves, not
“outsourced” to security (end-to-end responsibility). This requires
adequate training (e.g. security champions).

“Security is everyone’s concern”

Security in a Fast Moving Agile/DevOps Environment

48

SecAppDev 2019

2/23/2019

25

Containers (1/2)

Convenient but add complexity and potentially increase an application’s attack surface.

• Define images in text files, versioned, and stored in SCM.

- For reproducible builds, be explicit about versioning, don’t use the latest tag.

• Reduce the container’s attack surface by using minimal base layers (alpine, busybox,
scratch, distroless..)

- But, beware regressions due to insufficient testing against non-standard libraries (musl, uclibc)

• Never include secrets in build images. Use build-time --secret

• Do not pass secrets to containers on the cmdline or via the environment. Use docker
secrets.

• Store images in a central registry

- Regularly scanned for vulnerabilities

- Semantically tagged (production, testing, secure, etc.)

• certified/policy enforcement gives more assurance in automatically deployed artefacts.

Security in a Fast Moving Agile/DevOps Environment

49

SecAppDev 2019

Src: https://www.nearform.com/blog/static-analysis-of-docker-image-vulnerabilities-with-clair/

Containers (2/2)

• MicroScanner can scan at build time. No
docker image is produced if too many
vulnerabilities are found.

• Most other container scanning tools
require a registry (Clair, Anchore). This
can be conveniently combined with an
artefact repository (e.g. artifactory).

- Leverage policy-backed trusted registries

Security in a Fast Moving Agile/DevOps Environment

50

SecAppDev 2019

2/23/2019

26

Containing containers

Harden hosts against malicious or runaway containers (e.g. CVE-2019-5736)

• Limit host resources available to a container, e.g. disk, CPU, memory, mounted
volumes, etc. (cgroups)

• Run containers in their own kernel namespaces (at least the user namespace to map
the root user in a container to a harmless user on the host)

• Run the docker daemon under secure configurations (Apparmor profiles, SELinux
labels, Seccomp profiles..)

- Never expose the docker socket

• Run containers with their own network when possible.

• Audit hosts regularly using the Docker Bench for Security.

• Use an internal registry to cache versions of images used.

• Use signed (and verified!) images

Security in a Fast Moving Agile/DevOps Environment

51

SecAppDev 2019

Smoke

Testing

Health

Checks

The Big Picture (Recap)

SCM

CI/CD

Build

Vuln.

Mgmt.

Issue

Tracker

Artefact

Repository

Container

Registry
Container

Security

in-IDE

checks

Light

SAST

SCA

Unit

Testing

Full

SAST

Seq. Req.

Verification

DAST

Fuzz

Testing

Light

SAST

pre-commit

commit

build

test

production

1

2

3

4

5

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

52

2/23/2019

27

Conclusion

Security in a Fast Moving Agile/DevOps Environment

53

SecAppDev 2019

Conclusions

High-speed development environments force us to radically rethink
how we organise secure development.

At the same time, frequent software deployments also change the risk
posture of the application towards the organisation.

Successful security in such environments relies on empowerment,
shared responsibility and automation.

Security in a Fast Moving Agile/DevOps Environment

54

SecAppDev 2019

2/23/2019

28

Questions ?

Security in a Fast Moving Agile/DevOps Environment

55

SecAppDev 2019

Vaulting secrets in Kubernetes

Using Conjur

56
SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

2/23/2019

29

Use case: Kubernetes

Security in a Fast Moving Agile/DevOps Environment

57

SecAppDev 2019

Use case: K8s (1/4)

K8s Authenticator client (conjur-
authn-k8s-client)

• Talks to the Authenticator service
(running in the Conjur instance) on
behalf of the application to obtain an
access token to login to Conjur.

• Write token to the shared volume.

• Run as a sidecar container
(continuous) for apps requiring repeated
conjur access (e.g. due to secret rotation)

• Run as an init container (1-time)

Security in a Fast Moving Agile/DevOps Environment

58

SecAppDev 2019

2/23/2019

30

Use case: K8s (2/4)

Conjur k8s-authenticator plugin:

Conjur plugin, a service which
authenticates application pods.

Security in a Fast Moving Agile/DevOps Environment

59

SecAppDev 2019

Use case: k8s (3/4)

Assume conjur-authn-k8s-client runs as a sidecar container

• Verification: Conjur checks that requests come from a valid pod / namespace

• Sidecar generates a CSR, saves the private key

• Sidecar makes a login request to Conjur (sending pod name, namespace, CSR)

• Conjur (via k8s-authenticator plugin) handles the login request, generates a signed
certificate and saves it to shared memory (out of band)

• Conjur (via K8s-authenticator plugin) generates an encrypted access token for the
certificate

• Sidecar decrypts the access token (with a private key) and saves it to shared memory

• Summon uses the access token to request secrets on behalf of the application

Security in a Fast Moving Agile/DevOps Environment

60

SecAppDev 2019

2/23/2019

31

Use case: k8s (4/4)

• Prepare and load a Conjur policy, covering:

- Human users (k8s admin, devops, dbs..), k8s-authenticator plugin (which hosts & apps can
authenticate

- Applications: Which applications can access which secrets and how. Also any humans to create
them.

• Configure Conjur k8s-authenticator plugin: link to conjur policy..

• Select & deploy k8s authenticator client (conjur-authn-k8s-client): Sidecar or init. Edit
the application container manifest.

• Add other resources to app manifest: shared volume, various conjur & k8s variables
(pod name, namespace, Conjur authentication token file, Conjur account, …)

• Adapt the application to retrieve secrets

- Use conjur API

- Use summon

Security in a Fast Moving Agile/DevOps Environment

61

SecAppDev 2019

Misc

62
SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

2/23/2019

32

Not mentioned

Orchestration (e.g. Terraform)

• Which services to run in containers and which not?

• What to run in kubernetes and what not?

• Caching (e.g. node packages, pulled source code..)

• Integrating with kubernetes (creating helm packages, k8s deployments, etc.)

Security in a Fast Moving Agile/DevOps Environment

63

SecAppDev 2019

CICD security graphically

Security in a Fast Moving Agile/DevOps Environment

64

SecAppDev 2019

2/23/2019

33

Security in a Fast Moving Agile/DevOps Environment

65

SecAppDev 2019

Deployment

• Automated (e.g. terraform)

• Smoke tests

• Multiple environments

• Monitoring

- Regular in-app health checks

Security in a Fast Moving Agile/DevOps Environment

66

SecAppDev 2019

2/23/2019

34

Questions ?

SecAppDev 2019Security in a Fast Moving Agile/DevOps Environment

67

